
152

Development and Validation of a Hierarchical Memory Model Incorporating
CPU- and Memory-Operation Overlap

Yong Luo, Olaf M. Lubeck, Harvey Wasserman
Federico Bassetti, Kirk W. Cameron

Los Alamos National Laboratory
Mail Stop B2.56

Los Alamos, NM 87545
{yongl, oml, hjm, jtide, kirk,‘@lanl.gov

Abstract

In this paper, we characterize application
performunce with a “memory-centric” view. Using a
simple strategy and performance data measured on
actual mclchines, we model the performance of a simple
memory hierarchy and infer the contribution of each
level in the memory system to an application’s overall
cycles per instruction (cpi). Included are results
@rming the usefulness of the memory model over
several platforms, namely the SGI Origin 2000, SGI
PowerChallenge, and the Intel ASCI Red TFLOPS
supercomputers. We account for the overlap of
processor execution with memory accesses - a key
parameter, which is not directly measurable on most
systems. Given the system similarities between the
Origin 2000 and the PowerChallenge, we infer the
separate contributions of three major architecture
features in the memory subsystem of the Origin 2000.
cache size, outstanding loads-under-miss, and memory

latency.
Keywords.. performance evaluation, cache, memory
subsystem, computer architecture, and microproce.ssor

1. Introduction

The performance and scalability of high performance
scientific applications on large-scale parallel machines
are more dependent on the hierarchical memory
subsystems of these machines than the peak instruction
rate of the processors employed [l-2]. A few attempts
[14, 151 have been made to characterize the memory
system performance impact on the total runtime. Many
architectural improvements such as out-of-order
execution and more outstanding misses are widely

studied by simulations. However, studying the
performance impact of memory subsystem and processor
architecture improvements based on real applications on
production machines is rarely attempted. Such studies
promise insight for engineers in future architectural
design improvements and will provide information that
software engineers can use to improve code performance
in scalable environments.

In this paper, we model real application performance
with a “memory-centric” view. The applications and
their realistic problem sizes are a representative part of
the Los Alamos National Laboratory (LANL)
computational physics workload and most have been
designed with referential locality in mind. Instruction-
level simulation of even small problem sets would
require at least 12-36 hours and we thus resort to
experimental techniques and modeling to understand the
effect of changes in major architectural parameters.
Using overall average effect strategy and empirical
performance data from hardware performance counters,
we infer the contribution of each level in the memory
system to the application’s overall cycles per instruction
(cpi). We account for the overlap of processor execution
with memory accesses - a key performance parameter
that is not directly measurable on most systems.

Performance data on the application codes are
obtained on the latest Origin 2000 systems and Power
Challenge machines from SGI, along with the Intel ASCI
Red TFLOPS machine. This paper discusses only single
node executions. The SGI machines provide a unique
performance evaluation opportunity since the
architectures employ identical RlOK processors but
differ significantly in the design of the memory
subsystems so that performance studies due solely to the
memory architecture are possible. The same executables
are used on both Origin2000 and PowerChallenge to

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee”.
WOSP98, Santa Fe, NM. 1998 ACM l-58113-060-O/98/00.

eliminate software difference. In particular, there are
three major memory architecture differences: 1)
secondary cache size, 2) latencies to the main memory,
and 3) number of outstanding cache misses. Thus, we are
able to infer the separate contribution of each of these on
the performance of the application benchmarks.

The following sections of this paper describe: the
parts of the machine architecture relevant to this work,
small descriptions of the codes from the Los Alamos
National Lab computational physics workload, the model
and empirical methodology, validation of the model,
results, analysis and major conclusions.

2. Architecture descriptions

2.1. Origin 2000 and PowerChallenge

The PowerChallenge is an SMP architecture that
employs a central bus to interconnect memories and
processors [3]. The bus bandwidth (1.2 Gbytes/sec) does
not scale with more processors. Cache coherence is
maintained through a snoopy bus protocol which
broadcasts cache information to all processors connected
to the bus. The Origin 2000, on the other hand, is a
distributed shared memory (DSM) architecture which
uses a switch interconnect that improves scalability by
providing interconnect bandwidth proportional to the
number of processors and memory modules [4].
Coherence is maintained by a distributed directory-based
scheme. Figure 1 shows a network view of the machine.
Each router in the hypercube topology connects two
nodes to the network. Each node contains two
processing elements and one local memory unit. A 128-
processor system, for example, consists of a fifth-degree
hypercube with 4 processors per router.

The processing elements of both the Origin 2000 and
PowerChallenge systems use a 200MH.z MIPS RlOOOO
microprocessor. The processor is a 4-way super-scalar
architecture which implements a number of innovations
to reduce pipeline stalls due to data starvation and
control flow [5]. For example, instructions are initially
decoded in-order, but are executed out-of-order. Also,
speculative instruction fetch is employed after branches.
Register renaming minimizes data dependencies between
floating-point and fixed-point unit instructions. Logical
destination register numbers are mapped to the 64 integer
and 64 floating point physical registers during execution.
The two programmable performance counters track a
number of events [6] and were a necessity for this study.
The most common instructions typically have one- or
two-clock latencies.

1 Origin 2000 Topology

Figure 1. Origin 2000 topology for 32-proc
system

While the processing elements of the PowerChallenge
and Origin 2000 systems are identical, there are major
differences in the memory architecture and
corresponding performance of the two systems. The
PowerChallenge is an UMA architecture with a latency
of 205 clocks (1025 ns). Latencies to the memory
modules of the Origin 2000 system, on the other hand,
depend on the network distance from the issuing
processor to the destination memory node. Accesses
issued to local memory take about 80 clocks (400 ns)
while latencies to remote nodes are the local memory
time plus 33 clocks for an off-node reference plus 22
clock periods (CP; 110 ns) for each network router
traversed. In the case of a 32 processor machine, the
maximum distance is 4 routers, so that the longest
memory access is about 20 1 clocks (1005 ns) which is
close to the uniform latency of the PowerChallenge.
This unique feature of Origin 2000 systems provides us a
good opportunity to adjust the memory access latency by
placing memory and execution thread on different nodes.

In addition, improvements in the number of
outstanding loads that can be queued by the memory
system were made. Even though the RlOOOO processor
is able to sustain four outstanding primary cache misses,
external queues in the memory system of the
PowerChallenge limited the actual number to less than
two. In the Origin 2000, the full capability of four
outstanding misses is possible. The L2 cache sizes of
these two systems are also different. A processor of
PowerChallenge can be equipped up to 2MB L2 cache
while a CPU of Origin 2000 system always has a L2
cache of 4MB.

153

2.2. Intel ASCI Red TFLOPS Supercomputer

The ASCI Red Supercomputer is a Massively Parallel
Processor (MPP) with a distributed memory Multiple-
Instruction, Multiple Data (MIMD) architecture [161.
All aspects of this system architecture are scalable,
including communication bandwidth, main memory,
internal disk storage capacity, and I/O [171. The ASCI
Red maintains communication through an
Interconnection Facility (ICF) in a 38x32~2 topology
with a peak (sustainable) bi-directional bandwidth of 800
MB/set [161. A Kestrel board holds two compute nodes
connected through a Network Interface Chip (NIC) and
attached to a Mesh Router Chip (MRC). The memory
subsystem on an individual compute node is
implemented using the Intel 82453 Chipset with 128
MB/node.

ASCI Red is composed of 9,216 processors providing
4,536 compute nodes. Each compute node consists of
two 200 MHz Pentium Pro Processors. The 200 MHz
Pentiurn Pro processor is a 3-way super-scalar
architecture that reduces pipeline stalls utilizing features
such as out-of-order execution, speculative execution of
branches, and register renaming. Two programmable
performance counters are also available, providing the
data used in this study. Each processor includes separate
8KB data and instruction caches along with 256KB
secondary L2 cache. This L2 cache is located on a
separate die in the same package closely coupled via a
dedicated 64-bit full-clock-speed backside cache bus.
The Ll data cache can handle as many as four
outstanding misses and has a miss latency of three
cycles, whereas the L2 cache miss latency is about 50
cycles [15]. Only one CPU on a node is used for this
experiment.

3. LANL benchmark code information

Four applications that form the building blocks for
many nuclear physics simulations were used in this
study. A performance comparison of the Origin and
PowerChallenge architectures has been done using these
codes [7].

3.1. Code descriptions

SWEEP3D is a three dimensional solver for the time
independent, neutral particle transport equation on an

orthogonal mesh [8]. In SWEEP3D, the main part of the
computation consists of a “balance” loop in which
particle flux out of a cell in three Cartesian directions is
updated based on the fluxes into that cell and on other
quantities such as local sources, cross section data, and
geometric factors. The cell-to-cell flux dependence, i.e.,
a given cell cannot be computed until all of its upstream
neighbors have been computed, implies a recursive or
wavefront structure. The specific version used in these
tests was a scalar-optimized “line-sweep” version [Koch]
that involves separately nested, quadrant, angle, and
spatial-dimension loops. In contrast with vectorized
plane-sweep versions of SWEEP3D, there are no
gather/scatter operations and memory traffic is
significantly reduced through “scalarization” of some
array quantities. Because of these features, Ll cache
reuse on SWEEP3D is fairly high (the hit rate is about
85%). A problem size of N implies N’ grid points.

HYDRO is a two-dimensional explicit Lagrangian
hydrodynamics code based on an algorithm by W. D.
Schulz [9]. HYDRO is representative of a large class of
codes in use at the Laboratory. The code is 100%
vectorizable. An important characteristic of the code is
that most arrays are accessed with a stride equal to the
length of one dimension of the grid. HYDRO-T is a
version of HYDRO in which most of the arrays have
been transposed so that access is now largely unit-stride.
A problem size of N implies NZ grid points.

HEAT solves the implicit diffusion PDE using a
conjugate gradient solver for a single timestep. The code
was written originally for the CRAY T3D using
SHMEM. The key aspect of HEAT is that its grid
structure and data access methods are designed to
support one type of adaptive mesh refinement (AMR)
mechanism, although the benchmark code as supplied
does not currently handle anything other than a single-
level AMR grid (i.e. the coarse, regular level-l grid
only). A problem size of N implies N3 grid points.

NEUT is a Monte-Carlo particle transport code. It
solves the same problem as SWEEP3D but uses a
statistical solution of the transport equation. Particles are
individually tracked through a three dimensional mesh
where they have some probability of colliding with cell
material. The output from the particle tracking is a
spatial flux discretized over the mesh. Vector (or data
parallel) versions of this type of code exist which track
particle ensembles rather than individual ones. A
problem size of N implies N’ grid points and 10 particles
per grid point.

154

4

3

$ 2

1

0

L io.5

4

3

8 2

1

0

0.9

0.6

u CPI
0.7

---‘+--- L1 HIT RATE

0.6 ---a-- L2 HIT RATE

0.5
+ NORM. MFLOPS

0.4c L
I 1 1 I

25 50 75 100

Problem Size
Origin 2000

Figure 2. Performance of HEAT as a function of linear problem size. The right axis shows cache hit
rates and normalized MFLOPS.

6

5

$ 4

3

2

I .o

0.9

u CPI
0.8

--4-- 11 HIT PATE

--O--- L2 HIT RATE
0.7

----A-- NORM. MFLOPS

0.6

D

Problem Sire
Power Chal

Problem Site
Origin 2000

Figure 3. Performance of SWEEP as a function of linear problem size

I I I I I

100 150 200 250 300

Problem Site
Power Chal

I .o

0.8

$
0.6

0.4
100 Ii0 200 2iO 3dO

Problem Size
Origin 2000

-0.6

u

-

--o--

*

CPI

Ll HIT RATE

L2 HIT RATE

NORM. MFLCPS

Figure 4. Performance of HYDRO as a function of linear problem size.

155

w -“.9 1.5
- ffl

8 1.5 - -0.0 $ 0.8 --4-- Ll HR RATE

- LZHII RATE

-0.7 - NORM. MFLCPS

1’ 8 8 n&C
100 150 200 250 300 100 150 200 250 300

Problem Size
Problem Sire

PO wer Chal
Origin 2000

Figure 5. Performance of HYDRO-T as a function of linear problem size.

1.5

I .25

$ 1

0.75

0.5

I .25

20 30

Problem Size
Power Chal

IO 20 30

Problem Size
Origin 2000

40

0.9

- CPI

0.a -4-- Ll HR RATE

+ LZH,, RATE

0.7
- Nc+!M.~LcPS

Figure 6. Performance of NEUT as a function of linear problem size.

3.2. Performance characteristics

In this section we present some single-processor
characteristics of the benchmark codes as obtained from
performance counters on the Origin 2000. Note that the
maximum MFLOPS observed may, in some cases, be
obtained from unreasonably-small problem sizes relative
to actual production runs; the data are presented here
merely as a reference for the normalized Mflop curves in
Figures 2-6.

Detailed performance characteristic data for these
codes were collected on a I-MB L2 PowerChallenge
system and a 4-MB L2 Origin2000 system. Performance
data as a function of problem size for the Power
Challenge and Origin are illustrated in Figures 2 through
6. MFLOPS curves are normalized such that the
maximum rate for each code is one.

The codes’ overall cpi curves are generally the
inverse of their corresponding MFLOPS curves; that is,
an increasing cpi corresponds to a decreasing MFLOPS

at nearly the same slope and vice versa. The cpi of three
of the codes (HEAT, HYDRO and SWEEP) is strongly
dependent on problem size.

The above figures show that normalized MFLOPS
curves (except for HYDRO-T) follow the tendencies of
the L2-hit curves. On the PowerChallenge system, a
drop in L2-hit rate causes much more impact to
MFLOPS than it does on the Origin system. This is due
to lower memory latency (both actual and effective) on
the Origin2000 system. Although not shown in the
figures, we calculated TLB hit ratio and branch
prediction hit ratio. The calculation shows that MIPS
RIO000 processor can do a good job of speculative
branch prediction. All four benchmark codes (HEAT,
HYDRO, HYDRO-T and SWEEP) have branch
prediction hit ratios over 99%. This means that over
99% of speculated branch predictions are taken in real
executions. TLB hit ratios for all these codes are higher
than 98%. This high TLB hit ratio implies that the
impact of TLB misses can be ignored for these data sets.

156

4. Model description

The analysis in the following sections uses a
simplified mean value parameterization [1 l] to separate
CPU execution time from stall time due to memory
loads/stores. Figure 7 is a pictorial description of the
times in the model.

h,Tm

Figure 7. Relationship of modeled times

The model projects the overall cpi of an application as
a function of CPU execution time and average memory
access times:

nleve1.s

cpi = cpio + c hi * ti (1)
i=2

where cpio is defined to be the cpi of the application
assuming that all memory accesses are from an infinite
Ll cache and take 1 CP (i.e., the i=l term is included in
cpi,), and h, and t, are, correspondingly, the hits per
instruction and average non-overlapped access times for
the ith level in the memory hierarchy. Measured access
times at the ith level correspond to access time from
level i to the registers. The second term of Eq. 1 is also
referred to as cpi,,:,,,

If no overlap of CPU execution and memory accesses
occur, every memory access to the ith level incurs the
full round-trip latency, which we denote as T,. We define
(following Larson [121) a measure of the overlap of
memory accesses with computation as m,, where

cpi = cpi,+ (l-m,) c hi * Ti
j= 2

(2)

and, from Eq 1, m, is one minus the ratio of the average

memory access time to the maximum memory access
time:

nlevels
C

^
hi *ti

(3)

We note here that the separation of computational
time from memory access time in this model implies that
the two can be treated independently (i.e., that cpi, is

constant). In fact, the out-of-order execution of the
RlOOOO processor means that different dynamic
instruction sequences will be seen for different size
problems. The assumption that this effect is small is
tested with an RlOOOO simulator in a later section.

The effect of increasing the round-trip memory
latency to T, + dT,,, is depicted in Fig. 8. Once the
latency hiding ability of the architecture on a particular
code has been exhausted, any additional main memory
latency will simply add to the non-overlapped time t”. In
this case, the new cpi (from Eq. 1, where the sum is over
the L2 cache and main memory) will be:

cpi’= cpi, + h2t2 +h,(t,,, + dT,)

Figure 8. Relationship of modeled times

This equation predicts a linear relationship between
dTm and cpi’ of slope h,. If any additional memory
latency incurred by dTm can be hidden, the increase in cpi
will be strictly less than that predicted by Equation 4..
That is, the relationship is an upperbound for the increase
in time due to memory latency. This analysis will be
used and verified in a later section.

5. Measurements and validation

5.1. Measurements

The model described in the previous section provides
the foundation for an analysis of the Origin 2000’s
architectural features on application performance.

157

Measured vs Calculated

[lcpi measured q cpi cdc (2 Poramm

2.5

1

Figure 9. Model fit for codes with varying problem sizes

The first key issue is determination of the amount of Table 1 shows the model parameters for each of the
memory access time that is overlapped by computation. LANL benchmark codes determined from a data set of
Although this overlap is not directly measurable using executions on the I-MB L2 PowerChallenge. The least
the RlOOOO performance counters, we can infer the square fit generally has errors that are less than 6%. The
overlap for an individual application by fitting empirical maximum latencies, T,, are measured with LMBENCH
performance data obtained from its execution using [lo] and are found to be consistent with numbers
different problem sizes. published by SGI.

RlOOOO performance counters supply measurements
of the total execution cycles and total graduated
instructions. The ratio of these two measurements gives
the overall cpi of the application. The hit ratios (coming
from the same application executing on different
problem sizes) are also directly measurable and the
unknowns in Equation 1 become the average times, t!,
and cpi,. The value of cpi, can be obtained by measuring
the cpi of a problem that fits entirely in the Ll cache.
The remaining unknowns are inferred from the measured
data by a least squares fit constrained such that

Table 1. Model parameters for each code
(PowerChallenge)

5.2. Validation

0 <= t, <= T,, Validation of the inferred model parameters is
accomplished using the model to predict performance on

158

Table 2. Memory access times, t, , for the PowerChallenge, Origin 2000, and Intel ASCI Red

a different machine configuration. Original data from a
PowerChallenge with a I-MB secondary cache is used to
determine the unknown model parameters which are then
used to predict the performance of each code on a 2-MB
PowerChallenge. Figure 9 shows that the fit is extremely
close.

6. Results and analysis

6.1. Analysis of stall time due to memory accesses

Table 2 compares the memory access times, tt, for the
benchmark codes on the PowerChallenge, the Origin
2000, and the Intel AX1 Red supercomputer. In
general, L2 cache accesses are completely overlapped
with computation (low values of tJ for the comparable
Origin 2000 and PowerChallenge. Additionally, the
observed values of tm suggest that about one-half of the
main memory latency is hidden on the PowerChallenge,
and Origin 2000. The exception is SWEEP (not
measured on Intel Red) where the value of 1 lcps for t,,,
indicates that accesses to the secondary cache are not
overlapped. The reason that SWEEP stands out may be
due to loop-carried dependencies in the inner loops.
These dependencies present less prefetch opportunities
for the compiler and result in less overlap of processor
execution with memory accesses. We believe that the
model parameters for NEUT may be inaccurate. There is
so little time associated with the memory accesses for
NEUT (due to high cache-hit ratios; see Figure 6) that
small absolute least square errors can result in large
relative changes to the parameters.

Table 2 also shows effects attributed to the number of
usable registers on the two different microprocessors,
namely the MIPS RlOOOO, and Intel Pentium Pro. The
200MHz RlOOOO provides 64 registers [5a] whereas the
200MHz Pentium Pro allows at most 40 registers for
general use [151. This gap in registers available degrades
overlap performance as expected leading to a higher
percentage of overlap work performed by both the Origin
2000 and PowerChallenge. This is directly confirmed by
the higher percentage of non-overlapped access time (out

of nominal full latency) for HYDRO on Intel ASCI Red
in both L2 and memory levels.

Figures 10, 11, and 12 show graphs of cpi,,d,, relative
to the overall cpi for all machines on most codes. The
second half of each figure shows the corresponding
overlap parameter, m,,. A number of general
observations are apparent from the graphs. The overall
cpi on the Origin is typically less by factors of up to
three (see also Luo, et al. [7]) on the PowerChallenge and
consistently less than those measured on the Intel ASCI
Red. The percentage of cpi represented by stall time on
the Origin can be less than 40%, while, on the
PowerChallenge, it can be as large as 80%. Two codes,
HYDRO-T and NEUT, exhibit high locality of reference
and cpu stalls due to memory accesses are less than 10%
of the total time. A study of the
algorithms/implementations of these codes would lead
one to expect this. NEUT has a modest number of scalar
variables per particle that are used many times before
another particle is computed (high temporal locality).
HYDRO-T is a 2D code and was re-coded from the
original HYDRO so inner loops have stride-l
vectorizable loops (high spatial locality). The success of
the transposition can be seen by comparing each version
in the figures.

Memory overlap parameters are higher on the Origin
than on the PowerChallenge, indicative of the better
latency hiding capability of the Origin. As discussed
previously, and confirmed by the overlap parameters, the
Intel ASCI Red maintains an even lower hiding
capability than both the Origin and the PowerChallenge.
Two extreme examples are given: HYDRO-T with very
high overlap, and SWEEP (not shown for the Intel ASCI
Red), with very low overlap. The high spatial locality of
HYDRO-T means that there is a great deal of parallelism
between L 1, L2 and main memory accesses.
Additionally, on the Origin 2000, major portions of this
2-D algorithm tit entirely in the 4-MB L2 cache. In
contrast, SWEEP shows much less overlap on either the
PowerChallenge or the Origin. This is consistent with
the information in Table 2 in which we attributed to
loop-carried dependencies. The results for NEUT, where

159

the PowerChallenge shows high overlap and the Origin
shows very low overlap, are again due to the large
parameter changes associated with the least-squares fit
mentioned above.

6.2. Separate contributions to the stall time.

latency to main memory seen by an executing thread, by
placing the thread and its associated data on two different
nodes of the Origin. Figures 13 displays the
measurements for HEAT (HYDRO, HYDRO-T and
SWEEP are similar) showing the effect of memory

As described in Section 1, we performed an
experiment in which we systematically varied Tm, the

CPI vs CPI stall

(BCPI]

2.5

I
na

r
Figure 10. Memory stall 81 overlap parameters (PowerChallenge)

CPI vs CPI stall

10 CPI m CPI stall 1

16

1 .4

1.2

i 1
>

0.8

0.6

04

0.2

0

Figure 11. Memory stall & overlap parameters (Origin2000)

160

CPI vs CPI stall

Figure 12. Memory stall & overlap parameters (Intel ASCI Red)

80 ,m la 140 160 1m 200

Figure 13. Observed HEAT CPI vs. Memory latency (Origin 2000)

latency on the measured cpi. A linear dependency is
observed in agreement with Eq. 4, where the slope is
bounded by h,,,(see discussion in Section 4).

Using these measurements and other empirical data

We wish to find the contributing factors, f,, $,, and f,
(corresponding to cache, outstanding misses and memory
latency, respectively) such that:

on the two machines, we can infer the separate the F=fc*fo*fm. (6)
contribution of cache size, memory latency and number
of outstanding misses to the improved cpi of the Origin These factors can be defined as follows:
over the PowerChallenge. Let F be a measure of this
overall improvement:

(5)

f = hcC t2’C + hcC t? + cpi,
c

h4)t2PC + hf t? + cpi,
(7)

161

f. =
hftF + hztz + cpi,

cpi”
(8)

.0*

fm =
CPl

hftf + h,ft,f + cpi, ’
(9)

The denominator inf, can be viewed as the cpi of a
virtual machine whose characteristics are identical to
those of the PowerChallenge but with L2 cache size
equal to that of the Origin (4MB L2). The larger cache
size simply changes the hit ratios, PC hi , to h,!.
Similarly, the denominator in f, represents the cpi of a
virtual machine identical to the Origin except for a
memory latency equal to that of the PowerChallenge.
The cpi*’ for this machine is measured as illustrated in
Figure 13 (when the memory latency is around 201

cycles). The quantity,f;, then, is the ratio of the actual
PowerChallenge to a Power Challenge with the Origin’s
cache. The quantity,fO, is the ratio of this “larger cache”
PowerChallenge to an Origin with larger memory
latency. Finally, the quantity,fm, is the ratio of this “large
latency” Origin to the real Origin. The separate factors
satisfy the relationship in Eq.6. Each of these factors is
listed in Table 3, along with the calculated and observed
values, F, for the codes. The calculated and observed
speedups are in good agreement. With the exception of
HYDRO and a small HEAT problem, the values off; are
1 .O- 1.1 indicating that the effect of a larger L2 cache is
negligible. The values ofA, are also quite small (most
showing 10% or less improvement). The overall
improvement for over half of the benchmark codes
comes from the increased number of outstanding misses
on the Origin. About 75% of the total improvement of
the larger HEAT problems and 50% to 80% of SWEEP
come from this feature.

Table 3. Observed and calculated performance on the Origin2000

7. Conclusions

This paper describes a methodology using a simple
memory model with empirical parameters that accounts
for the overlap of single processor execution with
memory accesses. This method is applied to real
applications using performance counter data available on
actual machines. In general, this model quantifies the
amount of overall time that is spent on memory accesses
for each application. On the PowerChallenge, the
memory access time can be as large as 80% of the
overall execution time. On the Origin 2000, the memory

access time is less than 40%. Probably not directly
comparable due to inherent architecture differences, the
Intel ASCI Red showed stall times less than 20% for the
limited codes provided; we would expect these to grow
significantly for codes such as SWEEP3D. Using this
model, we discover that the increased number of
outstanding misses in the Origin 2000 is a major
contributing factor to the performance improvement in
two out of four codes. The effect of cache size on the
performance of these codes is generally much less
important except for a code with poor cache reuse
(HYDRO). Currently, the methodology is an excellent
diagnostic tool that can provide information about the

162

actual time that an application spends in memory
accesses. This model can be eventually incorporated into
a performance tool. The methodology can also be
applied to any architecture with the necessary hardware
counter information. Further work in our group is
currently underway to model other microprocessor
systems such as the IBM RS/6000 and to increase the
spectrum of observed codes for the Intel ASCI Red
machine. Future work will attempt to enhance the
predictive capability of the model and to develop a
software performance tool based on this methodology.

Acknowledgements

We thank Jim Schwarzmeier (SGI/Cray) who
reviewed the paper and contributed many thoughtful
suggestions for improvement and future work. Also we
extend thanks to Pat Fay of Intel for insight into the
workings of the ASCI Red performance counters.

References

[I] Wulf, W. A. and McKee, S. A. “Hitting the Memory Wall:
Implications of the Obvious,” Computer Architecture News,
Association for Computing Machinery, March, 1995.

[2] Burger, D. C., Goodman, J. R., and Kagi, A., “The
Declining Effectiveness of Dynamic Caching for General-
Purpose Microprocessors,” Univ. Wisconsin Computer
Sciences Tech. Report CS-TR-95- 1261, Jan. 1995, and
references therein.

[3] Galles, M. and Williams, E., “Performance Optimizations,
Implementation, and Verification of the SGI Challenge
Multiprocessor,” Silicon Graphics Computer Systems, ,”
Silicon Graphics Computer Systems, Mountain View, CA
web paper
http:ilwww.sgi.comlTechnologyichaIlengegaper.htmI.

[4] Laudon, J. and Lenowski, D., “The SGI Origin: A
ccNUMA Highly Scalable Server,” Proc. Compcon
Spring. 1997, IEEE Computer Society, Los Alamitos,
California.

[5] (a) MIPS Technologies, Inc., “RI0000 Microprocessor
Product Overview,” MIPS Product Preview, 1995. (b)
Yeager, K. C., “The MIPS RlOOOO Superscalar
Microprocessor,” IEEE Micro, April, 1996, pp 28-40.

[61 Zagha, M., Larson, B., Turner, S., and ltzkowitz, M.,
“Performance Analysis Using the MIPS Rl 0000

Performance Counters,” Proc. Supercomputing ‘96, IEEE
Computer Society, Los Alamitos, California, 1996.

[7] Luo, Y., Lubeck, O.M., and Wasserman, H. J.,
“Preliminary Performance Study of the SGI Origin2000,”
Los Alamos National Laboratory Unclassified Release LA-
UR -. 1997.

[8] Koch, K. R., Baker, R. S. and Alcouffe, R. E., “Solution of
the First-Order Form of the 3-D Discrete Ordinates
Equation on a Massively Parallel Processor,” Trans. of the
Amer. Nut. Sot., 65, 198, 1992.

[9] W. D. Schulz, “Two-Dimensional Lagrangian
Hydrodynamic Difference Equations,” Methods in
Computational Phys. Vol 3, pl, 1964.

[lo] McVoy, L. and Staelin, C., “lmbench: Portable Tools for
Performance Analysis,”

[l l] Vernon, M.V, Lazowska, E. D., and Zahorjan, J., “An
Accurate and Efficient Performance Analysis Technique for
Multiprocessor Snooping Cache-consistency Protocols,” in
Proc. 15th Annu. Symp. Comput. Architecture, Honolulu,
HI, June, 1988, pp 308-315.

[121 Larson, B., Silicon Graphics Computer Systems, private
communication, January, 1997.

[131 Turner, S., Silicon Graphics Computer Systems, private
communication, January, 1997.

[141 Bhandarkar, D. and Cvetanovic, Z., “Performance
Characterization of the Alpha 2 1164 Microprocessor Using
TP and SPEC Workloads,” Proc. Second. Int. Sypm. on
High-Perf. Comp. Arch., IEEE Computer Society Press,
Los Alamitos Ca., 1996.

[151 Bhandarkar, D. and Ding, J., “Performance
Characterization of the Pentium Pro Processor, “ Proc.
Third. Int. Sypm. on High-Perf. Comp. Arch., IEEE
Computer Society Press, Los Alamitos Ca., pp 288-297,
1997.

[161 Mattson, T. and Henry, G., “An Overview of the Intel
TLFOPS Supercomputer”, Intel Technical Journal, Jan.
1998.

[171 Sandia National Lab, “The ASCI Red TFLOPS
Supercomputer”, httn:l/www.sandia.goviASCI!Red!, Nov.
1996.

163

